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Abstract

There have been a number of efforts to broaden the use of lightweight continuations for
concurrency in programming languages, however, the implementation trade-offs of var-
ious designs under sequential and concurrent workloads are not well understood. Prior
empirical evaluations used cross-language and cross-compiler analyses, leaving much of
the folklore surrounding their performance without evidence.

We present the implementation of a single compiler and runtime system that supports a
broad range of strategies for continuations. Using this compiler, we conduct an empirical
analysis of both the performance and challenges involved in implementing different forms
of continuations for high-performance concurrency.
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Chapter 1
Overview

1.1 Introduction

Functional languages rely heavily on recursion and efficient function calls, making the
implementation strategy used for such operations a major factor in program performance.
A call stack is a data structure used as the backbone of languages that support functions,1

which normally need to allocate memory for each invocation (Dijkstra 1960). In addition,
a captured call stack is often used to represent a paused thread in languages that support
concurrency. Thus, having extremely lightweight mechanisms to allocate new call stacks
and switch between them is essential for the ease-of-use and scalablity of a concurrent
language.

Unfortunately, it is not clear which implementation strategy for a call stack is best suited
for a functional, concurrent language. Much of the current understanding of performance
trade-offs are based on cross-language and cross-compiler comparisons (Clinger et al.
1999), simulations and theoretical analysis (Appel and Shao 1996), or direct measure-
ments performed nearly 30 years ago (Clinger et al. 1988). In the absence of recent, well-
normalized measurements and their implementation specifics, the path of least resistance
when choosing a strategy is to trust folklore.

But, sometimes the folklore is misleading! For example, MULTIMLTON and GUILE

avoided the use of the segmented stack strategy in part because of reports from RUST and
GO developers suggesting poor performance due to segment bouncing (Sivaramakrish-
nan et al. 2014; Wingo 2014; Randall 2013; Anderson 2013). Interestingly, the bouncing was
solved by Bruggeman et al. (1996) in their original design of segmented stacks for their
SCHEME compiler. A subtle aspect of their solution is its effectiveness only for runtime sys-
tems that do not allow pointers into the stack, which is the norm for languages like ML and
SCHEME. Thus, when weighing one strategy against another, a deep understanding of the
design space is crucial. The purpose of this work is to help set the record straight by pro-
viding an empirical evaluation of different strategies, with well-normalized data collected
from the same compiler.

1.2 Background

When entering a function, the top of the call stack represents the continuation of that invo-
cation, i.e., the context in which the function’s result is needed. Concretely, the top of the

1Specifically, reentrant functions.
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stack consists of a frame containing data, such as local variables and a code address, that
belong to the function’s caller. A function makes a tail call if the callee will return directly
to the same context that the function itself would return to; otherwise it is a non-tail call.
To put it another way: if the very last thing a function does is perform a function call, then
that call is a tail call. Whenever a non-tail call occurs, a frame is pushed onto the call stack.
Once the callee has finished, it uses the topmost frame to resume its caller with its result.

Given any point in the program, its continuation is the abstract notion of the “next step
of computation” to be performed. A continuation represents this notion by capturing all
of the values needed to continue execution, such as the call stack and other live values. For
example, once one machine instruction has completed, the continuation of that instruction
consists of the machine registers containing live values, the reachable memory, and the
next instruction to be executed.

Thus, a new return continuation must be captured every time a non-tail call is encoun-
tered. This typically involves appending a new frame onto the call stack to store values
needed in the call’s continuation.2 Return continuations are captured and used (thrown)
very frequently in functional programs, which express loops with recursion. These contin-
uations have a restricted, last-captured-first-thrown lifetime that enables many optimiza-
tions (Chapter 2).

1.2.1 Continuation-passing Style

It is difficult to precisely discuss function calls and other control-flow mechanisms without
introducing a standard notation for them. We can rewrite a program in continuation-passing
style (CPS) to make all control flow explicit using continuations. Consider the following
factorial function written in CPS, where we will use STANDARD ML (SML) functions rep-
resent continuations.

fun factorial (n, k) =
if n = 0

then k 1
else let

fun retK x = k (n * x)
in

factorial (n-1, retK)
end

The additional parameter k represents the return continuation, which is used by an in-
vocation of factorial to return a result to its caller. When n is zero, the result of the
then-expression is not just 1, we explicitly return it by tail-calling (throwing) the return
continuation k with the argument 1. Informally, this is the regularization we are after by
rewriting in CPS: all control-flow is made explicit through either function calls or continu-
ation throws that are in tail position.

Before CPS conversion, when n is not zero, the else-expression would be n * factorial
(n-1). This recursive call is not in tail position, as its result is then multiplied by n. Thus,
we rewrite it in CPS by introducing (capturing) a new return continuation, retK, that is
passed in the recursive call, leaving the call in tail position. This new continuation captures

2Machine registers preserved by the callee may also be used to capture part of these continuations.

Draft 7 2



〈exp〉 ::= let (x1, ..., xn) = 〈prim〉 in 〈exp〉
| fun f (x1, ..., xn/k) = 〈exp〉 in 〈exp〉
| cont k (x1, ..., xn) = 〈exp〉 in 〈exp〉
| if x then 〈exp〉 else 〈exp〉
| apply f (x1, ..., xn/k)
| throw k (x1, ..., xn)

〈prim〉 ::= primitive operations and values

Figure 1.1: A continuation-passing style intermediate representation.

the computation to be performed on the recursive call’s result, which eventually returns to
the caller via k.

A CPS Intermediate Representation One of the problems with our CPS factorial exam-
ple is the lack of distinction between functions and continuations. Figure 1.1 shows a CPS
intermediate representation (IR) that can better serve as a vehicle for performing optimiza-
tions and analysis within a compiler. Below, we have rewritten our factorial example to
use the CPS IR instead.

fun factorial (n / k) =
let isZero = n == 0 in
if isZero

then throw k (1)
else cont retK (x) =

let res = n * x in
throw k (res)

in
let arg = n - 1 in
apply factorial (arg / retK)

in
...

Now, we are in CPS and the distinction between continuations and functions is pre-
served. The slash used in the parameter list of fun expressions separates continuation
parameters introduced by CPS conversion, from uses of reified continuations in the original
program, which would appear as regular function arguments. Reified continuations are
continuations exposed to the programmer as concrete values, which provides a powerful
way for programmers to express advanced control-flow.

1.2.2 Types of Continuations

Reified continuations are typically classified based on their lifetime and allowed number of
invocations, as these factors affect their implementation. If a continuation can be invoked
at most once, it is known as a one-shot continuation. Otherwise, a multi-shot continuation
can be invoked arbitrarily many times.
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type 'a cont

val callec : ('a cont -> 'a) -> 'a
val throw : 'a cont -> 'a -> 'b
val newstack : ('a -> 'b) -> 'a cont

Figure 1.2: An interface for reified escape con-
tinuations.

val nums = ...
val ans =

callec (fn bind => let
fun prod [] = 1

| prod (hd::tl) =
if hd = 0
then throw bind 0
else hd * (prod tl)

in
prod nums

end)
val next = ...

Figure 1.3: Using a continuation to exit
recursion.

The function callcc, found in SCHEME and SML/NJ, produces a first-class continuation
that has no restrictions: it is multi-shot and has an unlimited lifetime. All other continua-
tions are second-class because they are restricted in at least one of these dimensions.

For example, the continuations produced by call1cc as described by Bruggeman et al.
(1996) are one-shot, but have an arbitrary lifetime.3 An escape continuation is a one-shot
continuation whose lifetime is limited to its lexical scope (Fisher and Reppy 2002; Ram-
sey and Peyton Jones 2000). Escape continuations are simpler to implement due to their
restrictions, yet still powerful enough to support concurrency.

1.2.3 Programming with Continuations

Programmers can use escape continuations as the singular building block for programs
featuring advanced control-flow mechanisms. Figure 1.2 shows a simple interface in SML
for writing programs that use such continuations. When called, the function callec cap-
tures the continuation of its call (as an escape continuation) and invokes the function argu-
ment it was given, passing the continuation to it. We use throw to invoke a continuation,
which abandons the context in which throw is used and establishes the continuation’s con-
text. Thus, throw will never return a value, so it is safe to say that it can return anything.

In the example shown in Figure 1.3, callec is used to capture a continuation, bind, that
binds ans to the value thrown to it, and then continues on with evaluating the right-hand
side of next. We use the continuation bind to exit the computation of the product early,
if one of the integers in the list nums is zero. Otherwise, when the initial call of prod com-
pletes, the result is returned normally by callec. While we could have encoded this type
of control-flow using the exceptions built into SML, continuations can fully implement
exceptions and much more.

3While the return from call1cc is itself a use of the captured continuation, this is not enough to restrict its
lifetime: nested usage of call1cc allows for the return to be skipped.
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type thread = unit cont
type queue = thread list ref

(* queue actions *)
val globalQueue : queue
val addThread : thread -> unit
val tryRemove : unit -> thread option

val newThread : (unit -> unit) -> thread

(* scheduler actions *)
val exit : unit -> 'a
val yield : unit -> unit

Figure 1.4: A userspace threading library interface.

Concurrency The ability to create and control threads of computation provides a basis
for writing programs with explicit concurrency. Continuations can naturally represent
a paused thread, which enables programmers to implement threading as a userspace li-
brary (Ramsey 1990; Reppy 1991). While this application of continuations to concurrent
systems is certainly not a new idea (Wand 1980), we will illustrate it with an example.

Figure 1.4 shows an example threading library interface that can be implemented us-
ing just the functions in Figure 1.3. All functions in this example operate on the same
work queue, globalQueue. The yield function (Figure 1.5) enables cooperative scheduling
among threads in the globalQueue. When invoked, yield checks to see if other work is
available, and if so, it captures the continuation of its caller, places that paused thread on
the work queue, and then dispatches the other thread using throw.

fun yield () =
case tryRemove ()

of NONE => ()
| SOME thd =>

callec (fn self =>
addThread self;
throw thd ()

)

Figure 1.5: Cooperative scheduling with
continuations.

fun newThread f =
newstack(fn () => let

val () = f ()
in

exit ()
end)

Figure 1.6: Creating a new thread
with newstack.

Any continuation produced with callec is a prefix of some existing continuation. To
spawn new paused threads in the function newThread (Figure 1.6), we use newstack to
allocate a brand new continuation that will execute the given function in the new context.
In newThread, we wrap the function f so that, when it completes, the thread performs an
exit, which discards its continuation and dispatches the next thread in the queue.
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1.2.4 Manticore

Manticore is an optimizing compiler system that implements PARALLEL ML (PML) (Fluet
et al. 2008b), and serves as our common ground in exploring strategies for implement-
ing continuations. PML’s sequential language is a subset of SMLwithout mutation, and
features parallelism in the form of explicit and implicit threading. Explicit threading is
available through the ability to spawn lightweight threads that communicate over typed,
synchronous channels à la CONCURRENT ML (CML) (Reppy 1991). All threading features
are implemented by Manticore using continuations (Chapter 3).

1.3 Implementation Strategies

When capturing a continuation for a non-tail call, a frame is typically pushed, or linked,
onto the top of the call stack. The memory structure of call stacks is characterized by how
often pointers are used to link frames together (Figure 1.7).

At one end of the spectrum, the traditional contiguous stack requires no inter-frame
pointers if the frame sizes are statically known4, which is common in functional languages.
This reduces the effort required to establish a new frame and locate the caller’s frame to
simply adjusting the stack pointer by a fixed amount.

Variants of segmented stacks allocate smaller segments of memory at a time, linking
each segment together with pointers (Bruggeman et al. 1996). Frames within a segment
are accessed as in a contiguous stack, and the inter-segment pointers are only used when
a segment underflows or overflows. Thus, as the segment size shrinks, segment pointer

4Also known as frame pointer elimination.
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reads and writes become more frequent. If we were to allocate one segment per frame, we
are effectively at the other end of the spectrum, which is to allocate each frame separately
in the heap and link them together with pointers.

Trade-offs A major concern for compiler designers is the efficiency of the call stack for
sequential programs. Reusing memory allocated for stack frames is often seen as a benefit
for performance, as it would increase cache locality and reduce garbage collector burden.
But, reusing stack frames increases runtime system complexity, and makes first-class con-
tinuations expensive to use. In a parallel runtime system, a locking mechanism is also
required when exchanging continuations on a scheduling queue, such as during a yield
(Figure 1.5). Thus, immutable stack frames have desirable characteristics, but the perfor-
mance trade-off is not well understood.

Another concern that effects users of a compiler is a limit on recursion depth. Con-
tiguous stack implementations often reserve a fixed-size stack area which has no way to
expand in the event of overflow. This design choice removes the burden of checking for
stack overflow and updating pointers into the stack during a relocation. When stacks are
allocated in the heap, recursion is no longer limited in depth by the size of the reserved
stack space, but can use all memory available to the process.

1.3.1 Prior Work

Appel and Shao (1996) compared the cost of using immutable heap-allocated frames (Sec-
tion 3.4) against a typical stack. Stack-allocated frames were found to be more complicated
to implement than heap-allocated frames, while offering similar performance. Their argu-
ments were supported by simulations produced using a modified compiler that measured
cache effects and instruction counts.

In Appel and Shao (1996)’s cost model, all instructions were assumed to have the same
basic cost of 1 cycle. They also simulated a direct-mapped cache with a 10-cycle read-miss
penalty, no write miss penalty, and an infinite instruction cache. The main weakness in
their simulation of stack behavior was inflated instruction counts for frame initialization
in all benchmarks due to lack of frame reuse for non-tail calls (see Clinger et al. 1999,
Section 7). In addition, while their cost model may have been sufficient for processors at
the time, the performance of modern superscalars is more difficult to estimate.

Clinger et al. (1988) extended the MacScheme+Toolsmith compiler with support for var-
ious implementations of first-class continuation designs. Each design was tested by modi-
fying the out-of-line routines that are invoked to create and retire each frame; the compiler
was otherwise left unchanged. They found that the traditional stack performs well only
when first-class continuations are not used, and that immutable heap-allocated frames per-
form very poorly when the heap size is small. But first-class continuations are known to
be overly taxing when stacks are used for concurrency because of the additional copying
that is required (Bruggeman et al. 1996).

Bruggeman et al. (1996) put forth the use of cheaper one-shot continuations, with a
segmented-stack design, and compared them against immutable heap-allocated frames
using only a synthetic workload. Their performance evaluation varied the number of func-
tion calls per context switch, and reported that the heap-allocated frames are only a win
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when the switching rate is more frequent than once every four function calls.
Fisher and Reppy (2002); Ramsey and Peyton Jones (2000) suggested the use of escape

continuations for extremely cheap context switches when continuations are used for con-
currency. But, neither of those works include an evaluation, and we are not aware of any
other comparison of strategies for implementing escape continuations.

Allocation Characteristics A number of analyses have focused on the efficiency of frame
allocation and reuse for call stacks. Explicitly managing the allocation of frames in a con-
tiguous “stack region” (e.g., reusing recently popped frames first) is commonly seen as
a technique that benefits performance in two ways: (1) improved cache locality and (2)
reduced garbage collector burden because frames are kept out of the heap.

Gonçalves and Appel (1995) show that most frame reads are performed very soon after
allocating frames, and thus would still be in the cache regardless of whether the frame was
allocated in the heap or not. Stefanovic and Moss (1994) found that the lifetimes of im-
mutable, heap-allocated frames were extremely short, which suggests that with sufficient
memory and a copy-collected nursery, the load on the garbage collector may not be so
large (Appel 1987). Hertz and Berger (2005) found that the regular compaction offered by
such a nursery is also beneficial to cache locality verses other schemes for heap allocation,
but it is unclear whether this benefit can match the efficiency of stack allocation.

1.4 This Work

The process of capturing a reified continuation depends on the continuation’s lifetime and
number of uses (Section 1.2). If stack frames are reused, capturing a first-class continua-
tion requires making a copy of the call stack, either at the time of capture or when it is
thrown (Clinger et al. 1999). This makes first-class continuations nonviable for heavy-duty
applications such as concurrency. Nearly all of the prior work comparing implementations
of reified continuations have focused on first-class continuations.

Capturing an escape continuation is much cheaper than a first-class continuation in the
presence of frame reuse, since copying is not necessary, and escape continuations can be
used to implement concurrency (Section 1.2.3). Yet, what remains is the question of which
implementation of escape continuations should be used. There are a number of options
(Section 1.3), each of which have side effects, good and bad, on the rest of the compiler:
performance, complexity, and flexibility.

The goal of this work is to provide an empirical analysis of implementations of escape
continuations in order to make the trade-offs clear for compiler writers. To do this, we
extended the Manticore compiler and runtime system with support for multiple imple-
mentations of such continuations (Chapter 3). To our knowledge, this is the first head-to-
head comparison of implementations for lightweight escape continuations. In addition,
we provide a high-level review of the essential implementation optimizations and issues
regarding continuations (Chapter 2).

Overall, we are interested not only in the performance of continuations under sequen-
tial and concurrent workloads, but in qualities such as support for deep recursion and
implementation complexity (Chapter 5).
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Chapter 2
Issues and Optimizations
It is difficult to compare implementation techniques for continuations without understand-
ing the essential challenges they solve. In this chapter, we highlight the most common
challenges faced by implementations of continuations, with an added focus on functional
languages that rely on garbage collection.

2.1 Overflow Detection

Functional programs often make use of deep recursion, which may trigger a stack overflow
if the area in which stack frames are allocated has been exhausted. The two primary meth-
ods of detecting overflow when trying to allocate a frame are memory faults (via page
protection) and explicit limit checks.

Memory Faults Oftentimes, a special region of memory is reserved exclusively for al-
locating stack frames. Placing an access protected guard page at the end of this memory
region is a classic approach to detecting overflow without explicitly checking for it. The
downside is that any instruction that accesses a stack frame can trigger the memory fault
interrupt that is interpreted as a stack overflow. For example, this interrupt could occur
while spilling a register to the frame during a heap object’s initialization, which could
leave the heap in an indeterminate state.

Thus, heap allocations must be viewed as an atomic operation in order to be safe in the
presence of interrupts. Shivers et al. (1999) describe a number of approaches for imple-
menting heap allocations as lightweight transactions that can be, for example, run until
completion or restarted if an interrupt occurs. The registers and stack frame locations that
contain live heap pointers must also be decipherable when handling the interrupt (Section
2.4).

Instead of trying to recover from a fault-triggered overflow, many language implemen-
tations simply crash the program. For programs making use of deep recursion, the pro-
grammer is left with the option of setting a large default stack size in hopes of avoiding
overflow.

Limit Checks Since we can determine the amount of stack space required for each func-
tion, one check for available space at function entry is sufficient to detect overflow. These
stack-limit checks serve as safe points, allowing the garbage collector to avoid internal
fragmentation by growing and shrinking stack areas on demand.
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Of course, limit checks come at the cost of executing a compare-and-branch instruc-
tion sequence for each function call. If stack frames are allocated directly in the heap,
these stack-limit checks can be combined with limit checks for other heap allocations in
the function.

2.2 Reducing Frame Allocation

A capture-free function is a function that contains no calls other than tail calls. An important
subset of capture-free functions are leaf functions, which are functions that contain no func-
tion calls. Most function calls in a program are to leaf functions (Appel 1998), so they are
crucial to optimize.

Capture-free functions can often omit frame allocation because they do not capture the
continuation of a call; they only pass or use the continuation of their caller. The presence
of register spills or passing arguments in memory can prevent this optimization. But, if
all callers of a capture-free function guarantee that there is free space associated with its
frame,1 known as a red zone, the callee can use the caller’s frame for register spills. Thus, a
red zone allows a capture-free function with register spills to avoid allocating a frame.

Register Conventions Callee-saved registers (CSRs) are an optimistic register convention
for function calls. The caller of a function can leave live values in registers, allowing the
callee to save them to its frame only when those registers are needed. The hope is that the
callee and its descendants, particularly leaf functions, do not make use of those registers,
so they will remain in register until the callee returns. If any of the descendants do need
those registers, there is no longer a benefit as they will still be saved to a stack frame.

When CSRs are used anywhere within a function, one approach to preserving the regis-
ters is to spill and restore them at the entry and exits of a function. Chow (1988) describes
a more precise technique that saves and restores CSRs within a smaller subset of the func-
tion’s control-flow paths. Overall, the main downside to using CSRs is that the source of
callee-saved values are dynamic during execution, which complicates garbage-collected
runtime systems (Section 2.4).

2.3 Optimizing Frame Usage

Since each non-tail call within a function is a continuation capture, a frame is needed for
each call. We could allocate a fresh, immutable frame for each of these captures. But once
a call returns, if the call’s continuation was not reified, the space occupied by the frame for
that call is exclusively owned by the caller. This means that the function can reclaim, or
reuse, the frame’s space for the next call’s frame.2

A compiler can optimize the initialization of a frame by taking into account the values
already saved in the previously allocated frame. This optimization is called frame sharing.

1For example, a contiguous stack can reserve free space beyond the stack pointer for the callee’s use (Matz
et al. 2012).

2Sobel and Friedman (1998) explore a fun alternative for reusing frames, however, performance gains seem
unlikely.
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For example, if a value is live but unused across multiple non-tail calls, the value can be
allocated to a slot in the first frame, and left intact if the frame is reused. Without frame
sharing, the value would be copied out of the frame and into the next, using arbitrary slots.
Frame sharing with reuse can be treated as a form of the register allocation problem, e.g.,
values with disjoint lifetimes can be assigned to the same slot to minimize frame size.

Even if frames are not reused, it is possible to benefit from frame sharing. Consider the
case of several values simultaneously live across multiple non-tail calls. A pointer to an
object containing these live values can be copied to the freshly allocated frames for those
calls, reducing the copying overhead imposed by not reusing frames. When using function
closures to represent frames, this sharing optimization can be achieved, while preserving
space complexity (Section 2.4), by using safely linked closures (Shao and Appel 2000).

2.4 Finding Roots

Accurately identifying live heap pointers, or roots, in the stack frame and machine registers
is essential in a garbage collected runtime system. One approach for identifying roots is
to segregate them by using two stacks and two sets of machine registers: one for pointers
and the other for non-pointers. But, adjusting and performing limit tests for two different
stacks adds mutator overhead (Peyton Jones and Salkild 1989). Instead, uniformly sized
frame slots, plus either a tag bit per value or a parsable layout word per frame, is sufficient
to distinguish pointers from non-pointers in the frame.

A straightforward approach for identifying roots is to generate a map containing loca-
tion data at call sites,3 using the stack frame’s return address as the key (Diwan et al. 1992).
This allows the garbage collector to lookup a rich description of the frame slots and other
information while parsing a call stack. The map can be implemented using a hash table,
or spatially by placing location data just before the instruction pointed to by the return
address (GHC Team 2006, see Info Tables). It is unclear which combination of the above
approaches is most efficient.

Callee-saved Registers The use of callee-saved registers adds another layer of complexity
in terms of identifying roots. The difficulty is that the type of value in those registers, i.e.,
whether the value is a pointer, is dependent upon the function’s caller. Cheng et al. (1998)
found that the presence of callee-saved registers requires additional information output by
the compiler, combined with a two pass approach when scanning the stack to compute the
root set. A simple compromise would be to only use callee-saved registers for non-pointer
values.

Space Complexity Frame sharing with reuse (Section 2.3) complicates the precise com-
munication of the live roots in a frame to the garbage collector. We must prevent the
garbage collector from treating a leftover, dead pointer as a live root, because it would
cause a leak that can change the space complexity of the program (Appel 1992).

3It is also possible to generate location data for every instruction using clever data compression tech-
niques (Stichnoth et al. 1999).
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Consider, for example, the bit-tagging scheme for stack frames described earlier. To
prevent space leaks, it would be necessary to overwrite each pointer in the frame as they
become dead. In comparison, when using a layout word or a return-address map, at most
one write to the frame is required per call.

2.5 Generational Stack Collection

Generational garbage collection has proven to be an efficient means of implementing func-
tional languages, given the high turnover rate of heap allocations. Cheng et al. (1998)
found that, in a generational runtime system, stacks also benefit from a generational ap-
proach. They found that much of the garbage collector’s time was spent rescanning deep
control stacks, where most of the frame’s roots have already been promoted.

There are a number of ways to implement generational stack collection (Anderson 2010),
with the universal goal of detecting whether a given stack frame has been modified since
the last collection cycle. In Section 3.2.4 we describe our approach, which places a special
marker in each stack frame, incurring only one additional instruction per function call. If
stacks are also kept in the generational heap, a write barrier to detect stack frame updates
may be necessary.

2.6 CPU and ABI Support

Historically, instruction sets such as the x86 have contained dedicated instructions to assist
with the allocation of stack frames. Some CPUs use hardware in the instruction pipeline to
reduce the cost of adjusting the stack pointer register and increase branch prediction rates
for call and return (Gochman et al. 2003). Pettersson et al. (2002) tested the effectiveness of
this type of branch prediction on the x86-32 by modifying function calls so they are emitted
as a push followed by a jump instead of using the call instruction, which would activate
the return-branch predictor. They found that without the use of call, overall performance
of their benchmark suite dropped by 9.2%, with some call-heavy programs losing 20-30%.

The combination of dedicated stack instructions and the operating system’s application
binary interface (ABI) constrains the implementation of continuations. Many foreign func-
tion ABIs expect a guard page to detect stack overflow (Section 2.1), thus passing a stack
pointer that is in the middle of a heap-allocated stack to a foreign function is unsafe with-
out the addition of a guard page in the heap. If stacks in the heap are also relocated, the
garbage collector must use system calls to enable and disable the guard pages. An alterna-
tive is to use stack switching for each foreign-function call, incurring a few instructions per
call to swap a different stack into the stack pointer register.

2.7 Concurrency

Due to the lifetime restrictions of a captured escape continuation (Section 1.2), it is not pos-
sible to implement newThread (Figure 1.4) with such captures. Instead, to create a disjoint
execution context, we take newThread as a primitive operation that is implemented by the
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runtime system as follows. First, a call stack is allocated, consisting of one frame that will
execute the exit routine. Then, pushed onto this stack is a frame that will apply the given
function f to unit. Now, the top of the stack is a primed-and-ready paused thread that
executes f.

A hiccup occurs with frame reuse the presence of parallelism. Suppose we would like to
yield the current thread to other work waiting in a scheduling queue that is shared among
multiple processors. After processor P pauses the current thread by capturing an escape
continuation, it places the thread on the queue and then removes a thread to dispatch it.
This processor’s exchange on the scheduling queue is at risk of a race, as it is not finished
using the call stack of the current thread until it has dispatched another thread. Thus,
if some processor Q dispatches the thread from P too early, it can end up overwriting
frames still needed by P. To solve this, Fisher and Reppy (2002) use a lock field on captured
continuations to protect those frames.
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Chapter 3
Manticore Implementation

“A manticore is a fabulous
creature with a lion’s body, a
man’s face, and a sting in his tail.”

(Davies (1977))

In this chapter, we detail the extensions made to the Manticore system to evaluate dif-
ferent strategies for implementing escape continuations.

3.1 Overview

One of the key problems with Appel and Shao (1996)’s study is the lack of precision in
the cost model that simulates the execution of programs using stack (or heap) allocated
call stacks (Section 1.3.1). We take a different approach in that the Manticore compiler and
runtime system now offers real support for compiling programs that use stack (or heap)
allocated call stacks.

Manticore uses a CPS IR in its middle end for optimizations and code generation (Figure
1.1). To produce efficient stack-allocated continuations, Manticore uses a direct-style (DS)
transformation (Chapter 4) to undo CPS conversion before targeting a modified version of
the LLVM compiler toolchain (Lattner and Adve 2004). LLVM already produces code that
uses the stack efficiently; our minor extensions to LLVM improve its support for garbage-
collected languages.

The continuation strategies supported by Manticore are:

• Contiguous Stack (Section 3.2)

• Segmented Stack (Section 3.3)

• Immutable Heap Frames (Section 3.4)

The details of how these strategies are implemented in Manticore is the focus of this
chapter.

3.2 Contiguous Stack

Contiguous stacks are similar to the classic approach used in production compilers for C,
where each function allocates a single frame for its entire lifetime. The frame is reused
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Stack Descriptor

Guard Page

Free Stack Area

Heap

Landing Pad Frame

LongJmp

Captured Frames

SP

Escape Continuation

Figure 3.1: Layout of a contiguous stack, with an
escape continuation in the heap.

_some_function:
; prologue
subq $SpillSz , %rsp
pushq $0 ; watermark

...

; epilogue
addq $(SpillSz +8), %rsp
retq

Figure 3.2: Prologue/epilogue for
a contiguous stack.

by every non-tail call in the function, and objects allocated in the frame are shared across
multiple calls. Stack overflow is detected by protecting the last page of the stack from
memory access (Figure 3.1), which makes recovery in the event of overflow from deep
recursion impractical (Section 2.1), in exchange for omitting limit tests in each function’s
prologue.

3.2.1 Frame Management

In each function’s prologue, the stack pointer is adjusted to make space for stack saved
values such that the bottom of the frame is 16-byte aligned. Alignment is necessary to be
compatible with C foreign-function calls. Frame-pointer elimination is used throughout
since the caller’s frame is adjacent in memory to the callee’s, and frame sizes are statically
known.

Thus, only the stack pointer is bumped down in the prologue to establish an empty
frame, and correspondingly it is bumped up before returning (Figure 3.2). The prologue
also initializes a slot in each frame with a watermark value to support generational stack
collection (Section 3.2.4). Callees do not preserve any registers because we have not imple-
mented the corresponding callee-saved-register optimization for immutable heap frames
(Section 3.4).

3.2.2 Escape Continuations

Escape continuation capture is implemented using a short runtime system routine. This as-
sembly routine allocates a small object in the heap containing the stack pointer, the stack’s
descriptor, and the address of a routine, LongJmp, that performs a continuation throw (Fig-
ure 3.1). The object represents an escape continuation and is similar to a function closure,
but the garbage collector must treat it specially (Section 3.3.3). When the continuation is
invoked, LongJmp simply changes the current stack pointer to the one saved in the object
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and performs a return, indicating that the return is from an escape throw.

3.2.3 Space Complexity

In order to preserve space complexity in the presence of frame reuse and sharing (Section
2.3), we output stack layout information during compilation and then build a hash table for
the garbage collector. The table is keyed on return addresses, associating with that address
the size of the frame and the locations of live heap pointers in the frame at that point in
the function. All tail calls use constant stack space and are preserved by our direct-style
transformation.

3.2.4 Garbage Collection

In Manticore’s runtime system, a VProc, or virtual processor, corresponds to a single POSIX
thread (Fluet et al. 2008a). The garbage collector is modeled after the Doligez-Leroy-
Gonthier parallel collector, with each VProc assigned its own local heap and there is one
global heap shared among all VProcs (Doligez and Leroy 1993; Doligez and Gonthier 1994).
Local heaps are collected using Appel (1989)’s semi-generational collector, while the global
heap uses a parallel stop-the-world copy-collector (Auhagen et al. 2011).

In place of a write barrier, transitive object promotion is used to maintain the property
that there are no pointers from an older generation into a younger one. In total, there are
three generations in which heap objects may reside, the youngest of which is where objects
are initially allocated.

High-water Marks With immutable, heap-allocated frames, there is no extra effort needed
to add generational stack scanning (Section 2.5) to a runtime system that already employs
generational garbage collection. This is because the contents of each frame, and thus any
live roots, will never change after being promoted to a later generation.

For implementation strategies that reuse frames, a watermark is placed in each stack
frame to avoid excessive stack scanning. A watermark is an indicator shared between the
mutator and garbage collector that represents the state of the frame and its predecessors.
In our runtime system, there are three values a watermark can take on, one for each gen-
eration from youngest to oldest: nursery, major heap, global heap. Whenever a function is
called, the mutator places a nursery watermark in the frame established by that function,
indicating that the frame may contain pointers into the nursery (Figures 3.2 and 3.4).

During the collection of a generation, these watermarks are overwritten by the collec-
tor with the indicator corresponding to the generation that the frame’s pointers were for-
warded to. A generation’s collector will stop scanning a stack once it sees a watermark
that is older than the current generation being reclaimed. This point represents the high
watermark of the current stack, i.e., the furthest point back where pointers in the current
generation may reside, as all pointers behind it have already been forwarded.

Critically, the collector must still scan the first older frame that is encountered. This is
because the mutator only adds a fresh nursery watermark when the frame is first setup. So,
a function that has completed multiple non-tail calls between collections, but did not yet
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Figure 3.3: A stack segment has insufficient space in (a). Then, in (b) the overflow handler
moves a bounded number frames to a new segment to avoid bouncing.

return, will have an older watermark in its frame, with roots that might be in a younger
generation.

3.3 Segmented Stack

Fundamentally, a segmented stack is a contiguous stack broken into smaller segments that
are linked together, with each segment providing space for multiple frames allocated con-
tiguously, as in Section 3.2.1. Stack overflow is a recoverable event that allocates and links
another stack segment (Section 3.3.1). This design allows for arbitrarily deep recursion at
the expense of stack limit tests in the function prologue. Our segmented stack is imple-
mented as described by Bruggeman et al. (1996), with a minor variation (Section 3.3.2).

3.3.1 Overflow and Continuation Capture

Handling Overflow Every function that utilizes a stack frame ensures that there is suf-
ficient space in the current segment before allocating their frame. This check adds a few
additional instructions to the function’s prologue (Figure 3.4). As an added optimization,
there are 128 bytes of stack spillover, or slop, available past the limit of every segment (Fig-
ure 3.3). The slop area enables us to omit the add instruction in the stack limit instruction
sequence, if the function’s stack frame is less than the slop size.

If there is insufficient space available in the current segment, growstack invokes the
segment overflow handler. The first step in the process of handling overflow is to obtain
a fresh stack segment, either from the free list or newly allocated, and link it back to the
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_no_slop_optimization:
movq 120(% r11), %rbp
addq $168 , %rbp
cmpq %rbp , %rsp
jge allocFrame_1
callq ___manti_growstack ; overflow handler

allocFrame_1:
subq $152 , %rsp ; spill area
pushq $168 ; total frame size
pushq $0 ; watermark
; ... body ...

_with_slop_optimization:
cmpq 120(% r11), %rsp
jge allocFrame_2
callq ___manti_growstack

allocFrame_2:
subq $56 , %rsp
pushq $72
pushq $0
; ... body ...

Figure 3.4: Example function prologues for a segmented stack.

filled segment. The fresh segment has an underflow handler frame installed at the bottom,
which performs an continuation throw to the previous segment using the descriptors.

Then, we move a handful of the most recently allocated frames to the new segment (Fig-
ure 3.3b), as described by Bruggeman et al. (1996), to solve the bouncing problem cited by
others (Anderson 2013; Randall 2013). Segment bouncing is more likely to occur without
this trick, as the function that caused the overflow may immediately return and perhaps
be called again, repeatedly, invoking the overflow/underflow handlers each time. Cur-
rently, we bound the amount of data moved to most four frames or less than half of the
segment’s size, whichever comes first. The segment is efficiently parsed, i.e., without the
use of a lookup table, to find frames to move because every frame also includes its size
(Figure 3.4).

Moving these frames is a challenge if pointers from the heap into the stack are allowed,
because we would need to update them. One way to find these pointers without scanning
the entire heap is to maintain a remembered set in each segment descriptor, adding to it
whenever a pointer into the stack is created. Thus, Bruggeman et al. (1996)’s solution to
segment bouncing seems impossible to implement in RUST and impractical in GO (Section
1.1). In Manticore, there is no challenge when moving frames since there are no pointers
into the middle of a stack.

Continuation Capture Capturing an escape continuation is almost identical to handling
overflow. For overflow, the stack pointer is saved in a segment descriptor instead of a heap
object, and the underflow handler corresponds to LongJmp.

The major difference is that frames are not moved from the old segment to the new one,
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to avoid having pointers into the middle of a stack. Otherwise, a heap object is allocated
to represent the escape continuation as is done for a contiguous stack (Section 3.2.2).

3.3.2 Segment Allocation

Rather than allocating each segment in our normal heap, we allocate segments in their
own non-moving, mark-sweep managed heap region. Note that frames within a segment
are still moved, but not the segment itself. The reason for this design is two-fold.

The first reason is due the particular setup of our generational garbage collector. Brugge-
man et al. (1996) strongly suggests the use of a cache of free stack segments to improve
performance, but if the segments were kept in our heap, which is regularly compacted, the
cache would also be regularly emptied. Emptying the cache places extra strain on the col-
lector, as a burst of thread allocations following a collection could quickly fill the nursery
with empty segments, triggering another collection to promote them.

The second reason is due to the difficulty of implementing a C foreign-function call if
segments are kept in a moving heap. While a Manticore function would regularly check to
ensure a segment does not overflow, a C function relies on a guard page.

One solution is to change every C call emitted so that we switch to a page-protected
stack immediately before the call, and right afterwards we switch back to the current stack
segment. While this should have only a minor overhead, this solution would be annoying
to implement in practice, especially in LLVM.

We instead take advantage of the plentiful virtual memory in modern systems. The
page at the end of each segment is memory protected, and we also add a few kilobytes of
foreign-function stack space past the segment’s limit (Figure 3.3a). This way, C calls can
be safely performed at any point in a segment.

3.3.3 Stack Cache

Stack segments and contiguous stacks are kept in a separate region of the heap that uses
a non-moving, mark-sweep collection strategy (Section 3.3.2). Each VProc maintains two
lists: one consisting of all active allocations, and another for freed allocations for use as a
cache whenever new stack allocations are needed.

By the nature of a generational heap, not all active stack allocations will be encountered
during a collection cycle, which complicates the integration of a mark-sweep region. This
is because a VProc’s scheduling queue does not reach every live continuation, as some may
be stored in an object that is located in an older part of the heap.

To solve this, each stack allocation has an age field in its descriptor that is used to track
the oldest generation of the heap in which a pointer to that allocation has ever existed.
This field is used to determine whether it is safe to reclaim a stack after tracing only part
of the heap. During the sweep phase, the collector for a given generation will only reclaim
an unmarked stack if its age is younger or equal to the current generation.

Draft 7 19



3.4 Immutable Heap Frames

Some compilers, e.g., SML/NJ, use ordinary, immutable function closures to represent
frames of the call stack (Appel and Jim 1989). Thus, the closure conversion strategy plays
an important rôle in determining the structure and efficiency of such a stack.

A flat closure (Cardelli 1983) is an array consisting of a function pointer and the free vari-
ables of that function. If part of the call stack, the function is the point of return for a call,
and a pointer to the previous frame is one of its free variables. Thus, if flat closures are to
represent frames of the call stack, its structure is equivalent to linking individual frames
together with pointers. Shao and Appel (2000) discuss a more sophisticated closure strat-
egy, safely linked closures, that yields significant efficiency gains over flat closures (Section
2.3). In Appel and Shao (1996)’s evaluation of call stacks, their heap strategy corresponds
to using safely linked closures for continuations.

Manticore uses comparatively less efficient flat closures, which exhibit worst-case per-
formance for a sequence of non-tail calls. For continuations that are bound and used locally
within a function, also called a join continuation, closure capture and dispatch is not used.
Instead, throwing to a join continuation is the same as a function-local jump, or goto, and
the closure’s free variables are passed as additional parameters. All continuations cap-
tured using this strategy, including those for standard function calls, are immutable and
thus could be used as a first-class continuation.
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Chapter 4
Direct-style Conversion
It is possible to extend the closure conversion described in Section 3.4 so that stack frames
are reused and shared across non-tail calls within a function (Adams et al. 1986). However,
this optimization alone would not produce the type of code typically output by compil-
ers that stack-allocate frames. For example, CPU-optimized stack manipulation instruc-
tions (Gochman et al. 2003) that incrementally build and modify each frame are normally
used.

It is not possible for LLVM to stack-allocate continuations while the program is in CPS,
as every call is in tail position. Thus, we extended Manticore to undo CPS conversion dur-
ing closure conversion, in order to use LLVM as a baseline for stack-based continuations.
While converting a program to CPS is widely known, comparatively less has been said
about converting CPS programs back to their original form, direct style (DS).

In this section, we describe a practical application of direct-style conversion in a CPS-
based compiler to target LLVM.

4.1 Overview

Before diving into direct-style conversion, we briefly discuss the compilation steps and
intermediate representations (IRs) used in the Manticore compiler (Figure 4.1). The BOM
IR is a direct-style λ-calculus in A-normal form (Flanagan et al. 1993), with support for
reified continuations. Higher-level concurrency features in PML are implemented using
continuations in BOM. Figures 1.1 and 4.2 show the relevant parts of the CPS and CFG IRs.

CFGCPSBOM

Classify
Continuations

CPS Convert

Closure & DS
Convert

Closure
Convert

Emit 
LLVM…

(1)

Wrap
Captures

(2)

(3)

Figure 4.1: Manticore’s compilation steps. Dashed arrows are involved in direct-style con-
version.
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〈prog〉 ::= 〈func〉+

〈func〉 ::= f { 〈blk〉+ }

〈blk〉 ::= b (x1, ..., xn) = 〈stmt〉* 〈transfer〉

〈transfer〉 ::= goto b (x1, ..., xn)
| if x then b (x1, ..., xn) else b′ (y1, ..., ym)
| tailcall f (x1, ..., xn)
| call (r1, ..., rm) = f (x1, ..., xn) then goto b (y1, ..., yp)
| return (x1, ..., xn)
| throw k (x1, ..., xn)
| ...

〈stmt〉 ::= primitive operations

Figure 4.2: Manticore’s control-flow graph (CFG) intermediate representation.

During CPS conversion, we separate the additional continuation parameters that are
added to each function and include their kind (e.g., an exception handler). After optimiza-
tions have been applied to the CPS program, direct-style conversion is performed.

The three-step DS conversion process is a combination of ideas from Reppy (2002);
Kelsey (1995); Danvy and Lawall (1992). First, an analysis pass leveraging information
retained by CPS conversion classifies continuations (Section 4.2). Then, a transformation
pass introduces callec expressions (Figure 1.1) for reified continuations (Section 4.3). Fi-
nally, an alternate closure conversion pass converts the CPS program to a direct-style CFG
program (Section 4.4).

4.2 Classifying Continuations

In our first step of direct-style conversion, we run an analysis pass over the CPS program
(Figure 1.1) to assign a classification to continuation bindings (i.e., cont expressions) and
their uses. We define the function context of a non-function expression to be the inner-
most function in which the expression resides. The current continuation is the continuation
bound as a parameter of the function context that is used for local returns. A continua-
tion is an escaping value if it is saved to memory, or passed as a value argument (instead
of a return continuation argument) in an apply or throw expression. The overall goal of
the analysis is to identify all second-class continuations in the program, which satisfy the
following restriction.

Definition 4.2.1. (Second-class Restriction)

1. All uses of the continuation must occur in the function context in which it is bound.

2. The continuation must not be an escaping value.
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Any continuations which fail to satisfy the second-class restriction are reified continua-
tions that are used in a first-class way.

During the analysis, we further distinguish the kind of second-class continuation bind-
ings. A second-class continuation is a return continuation if it appears as such a continua-
tion argument in at least one apply expression. Otherwise, the second-class continuation
is called a join continuation. Undoing CPS conversion is essentially turning all return con-
tinuations into join continuations.

Taming CPS Optimizations Because we are performing direct-style conversion after CPS
optimizations have been applied to the program, assumptions about the well-behavedness
of the current continuation may not hold. In particular, CPS IR inliner can introduce sit-
uations where a return continuation is both returned to normally with a local throw, and
thrown to as an escape continuation in a non-local throw.

fun f (x / retK1) =
cont k () = throw retK1 ()
in

fun g (y / retK2) = throw k ()
in
...

In the example above, it makes sense to optimize the throw to k by inlining its body,
but in doing so we would introduce a use of the parameter-bound return continuation
retK1 inside of the function context g, which turns retK1 into a non-local return. This
transformation makes it harder to analyze and perform direct-style conversion.

Instead of making the inliner smarter about this situation, we avoided the problem by
disabling the inliner’s ability to inline continuation throws, whether stack-allocated con-
tinuations are desired or not. In future work, we plan to extend the inliner to include
additional information about which continuations were bound locally within the function
context of the throw. Then, for stack-based strategies it will only be valid to inline a con-
tinuation throw whose target is a locally-bound continuation.

4.3 Dealing with Escape Continuations

After classification has identified all second-class continuations, we transform the pro-
gram so that reified escape continuations are captured efficiently in LLVM. The difficulty
in LLVM is that we cannot efficiently capture an optional stack frame.1 Thus, we imple-
ment escape continuation capture as a call to a special function, following the design of
setjmp and callcc in other languages. These special calls do not exist in the CPS pro-
gram, as we use the continuation binder cont to define continuations explicitly. Thus, we
transform the CPS program by wrapping escape continuation captures using a new con-
struct callec (f / k), which represents the application of function f to the reified return
continuation k.

1While coroutine support is currently in development for LLVM (Nishanov 2016), its compatibility with this
work is unknown.
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(*** before transform ***)
fun outerF (.. / retK) =

...
cont k (x) = B (* <- an escape continuation *)
in

C

=⇒

(*** after transform ***)
fun outerF (.. / retK) =

...
cont k (x) = B (* <- now a join continuation! *)
in

cont landingPad (dispatchCode : int , arg : any) =
if dispatchCode == REGULAR_RET

then throw retK arg
else throw k arg

in
fun manipK (k' : cont(any) / landingPad ' : cont(int , any)) =

cont manipRetk (x : any) =
throw landingPad ' (REGULAR_RET , x)

in
{C | k 7→ k′ and retK 7→ manipRetk}

in
callec (manipK / landingPad)

Figure 4.3: Introduction of callec to capture an escape continuation when using LLVM.

In essence, the transformation is demoting all escape continuation definitions so that
they are now join continuations. In the rewrite example shown in Figure 4.3, k is the
escape continuation to be demoted, and retK is the current continuation relative to k.

To demote k to a join continuation, we introduce a new function manipK that receives the
escape continuation k as the parameter k’. Then, we introduce a new return continuation,
landingPad, that acts as a switch to determine which continuation of outerF to invoke
with the given argument. We generate the switch by inspecting the free-variables of C for
continuation uses and replacing them as-needed to pass through the landing pad with its
appropriate dispatch code. This landing pad acts just like the point at which a setjmp
returns to determine whether its returning from a longjmp or the initial call, but handles
multiple continuation scenarios.

There are some type-signature changes needed to unify the argument types of retK and
k. The type system of the CPS IR has a polymorpic any type that we use to pass any
single uniform value through to the landing pad, and then cast the argument back once
the dispatch code is inspected. For continuations taking multiple arguments, one could
pad out the argument types of those continuations and pass unit in place of a missing
value, but we did not need to do this since such continuations are rare in our compiler.
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4.4 Closure Conversion

Flat closure conversion mostly proceeds as usual, with some exceptions. Join continuations
and return continuations turned into basic blocks, since continuations will no longer be
explicitly passed to the callee.

Each apply expression is transformed differently, depending on whether the function
call is a tail call or not. While every function application appears in tail position in CPS,
and would normally turn into a tailcall in CFG, these calls are not necessarily tail calls
(Section 1.2). In particular, only an apply that is given the current continuation as the
return-continuation argument is a tail call; otherwise, the apply is a non-tail call. The
callec expression also represents a non-tail call, however, the function called is a special
runtime system function (Section 3.2.2).

Consider the non-tail call apply f (x/retK). For immutable heap frames, we would
allocate a function closure that contains the free variables and code address of retK, and
pass the closure to f . We are forced to determine how to preserve those values by the
nature of a continuation-passing style program. Thus, to undo the CPS call, we simply
choose to not explicitly capture or otherwise define how to save and restore those free
variables. Instead, we allow those values to remain live across a CFG call transfer (Figure
4.2). The free variables, along with any returned values and arguments, are passed to the
block representing retK in the sequel of the call as a function-local jump. LLVM will
later decide how to stack-allocate the frame needed for the values in the sequel when
performing the call to f .

When a CPS throw is transformed, we inspect the kind of continuation being thrown.
A CFG return to the function’s caller is emitted only if the throw is to the current con-
tinuation. Any other second-class throw, to either a return or join continuation, is simply
a function-local jump that does not change the current continuation. A throw to an es-
cape continuation becomes the only situation where a CFG throw is still emitted. These
CFG throws eventually turn into a tail call that invokes a routine corresponding to C’s
longjmp (Section 3.2.2).

Draft 7 25



Chapter 5
Analysis

“The real performance cost of first
class continuations is the time and
money required to implement
them.”

(Clinger et al. (1988))

In this chapter, we evaluate the implementations of escape continuations in Manticore
under both performance and relative burden to compiler writers.

In Section 5.2 we explore the effects of these strategies on sequential programs. Then,
we compare the overhead of using these continuations for explicit threading in Section
5.3. Finally, we provide an empirical report on the difficulty of implementing various
continuations in Manticore (Section 5.4), and draw conclusions in Section 5.5.

5.1 Experiment Setup

All performance data was collected using a Linux workstation equipped with two Intel
Xeon E5-2687W CPUs and 64GB RAM. A modified version of LLVM 3.8.1 was used by
Manticore to compile benchmarks for the x86-64 architecture. During program start-up,
the stack cache is pre-loaded with free stacks. Running times exclude program start-up
and all numbers reported are averaged from multiple trials, with at most 1.5% standard
error. The size of each contiguous stack was 100MB, and stack segments were 16KB each,
unless otherwise noted.

Program LOC Description
ackermann 9 Compute the Ackermann function, input (3, 11).
takeuchi 11 Compute the Tak function, input (33, 22, 12).
life 147 Game of Life using lists, Queen Bee Shuttle.
minimax 128 Tic-Tac-Toe solver using Minimax.
queens 41 N-Queens puzzle solver, N = 12.
quicksort 56 Quicksort random integers, using lists.
nbody 81 N-body gravity simulation, N = 5.

Figure 5.1: Description of sequential benchmarks. LOC is actual lines of code.
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Figure 5.2: Speedups are relative to the same program compiled without the use of the RAS.
Thus, the RAS improves performance if speedup > 1.

5.2 Efficient Recursion

To help understand the effect of CPU-specific instructions to initialize stack-allocated con-
tinuations, we compiled our sequential program suite (Figure 5.1) in two configurations.
In one configuration, we replaced all return instructions in PML functions with an equiv-
alent pop-jump sequence:

retq =⇒ popq %rbp; jmpq *%rbp

This replacement effectively disables the CPU’s return-address stack (RAS), which is an in-
ternal stack of return addresses recently placed on the stack that the CPU uses to predict
the target of a return (Baer 2009).

Figure 5.2 shows that the return-address stack improves the performance of sequential
programs by roughly 4%. Speedups for each benchmark program are shown relative to
the same program that was compiled with the pop-jump replacement to disable the RAS.
We are not sure why the life program performs notably worse when using the RAS. Our
best guess is that the indirect-branch predictor happens to work better for function returns
in that program.

Figure 5.3 highlights the performance of two programs whose performance depends
solely on the speed of non-tail calls. In all of our Figures, the “CPS” strategy, which stands
for closure-passing style, refers to immutable, heap-allocated frames (Section 3.4).

The efficient frame sharing and reuse used in the stack-allocated strategies is likely the
reason for the large difference in these benchmarks. Because the CPS strategy is imple-
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Figure 5.3: Sequential benchmarks that heavily stress the performance of function call and
return.

mented with flat closures, there is no frame sharing or reuse, so these results show the
worst-case scenario. Shao and Appel (2000) show that there are modest performance gains
when using safely-linked closures, which feature environment sharing.

Figure 5.4 shows the performance of a set of more realistic sequential programs. The
poor performance of CPS is less noticeable in these programs, but stack-allocation is still
up to 18% faster.

Garbage Collection Overhead In Figure 5.5, we break down the proportion of time spent
in the in the mutator and collector, showing that for many of the benchmarks, the load
placed on the garbage collector when using the CPS strategy does not appear to be the rea-
son for the performance difference. The Figure also shows that ackermann and quicksort
spend most of their time garbage collecting.

Figures 5.6 and 5.7 dig deeper into those two benchmarks, showing the amount of live
data that was promoted (copied) to the next generation while scavenging each generation
of the heap.1 The amount of copied data gives us an idea of the amount of work being
performed by the garbage collector in each phase.

The basis of Appel (1987)’s argument for heap-allocated frames is that, with a tracing
garbage collector and a sufficiently large heap, no additional load is placed on the garbage
collector because frames are short-lived. Stefanovic and Moss (1994) concurs with this
assessment, showing that even with heap-allocated frames, only 2% of the nursery is live
during garbage collection.

But, in the case of our ackermann and quicksort benchmarks, a larger portion of the
nursery is live when using heap-allocated frames (44% and 30%, respectively) verses the

1A Minor GC collects the nursery, where all allocations are created, and the Major and Global heaps are used
for older objects, respectively.

Draft 7 28



R
el

at
iv

e 
Sp

ee
du

p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Program

life minimax queens quicksort nbody

cps contiguous segmented contiguous (noras) segmented (noras)

Figure 5.4: The performance of a set of larger sequential programs.

Ti
m

e 
Sp

en
t i

n 
G

C

0%

10%

20%

30%

40%

50%

60%

70%

80%

Program
ackermann takeuchi life minimax queens quicksort nbody

cps contiguous segmented

Figure 5.5: The proportion of running time that was spent in the garbage collector.

Draft 7 29



Live Data Copying (Ackermann)

cps

stack

Bytes Copy Collected (GiB)
0 2 4 6 8 10

minor gc major gc global gc

Figure 5.6

Live Data Copying (Quicksort)

cps

stack

Bytes Copy Collected (GiB)
0 0.25 0.5 0.75 1 1.25

minor gc major gc global gc

Figure 5.7

stack-allocated versions (13% and 20%, respectively). These two benchmarks exhibit atyp-
ical recursion patterns, which causes a large number of allocated frames to be long lived.

Surprisingly, even though the CPS version of quicksort does more work in the collector,
its overall running time is better than any other strategy (Figure 5.4). We believe this is due
to the lucky cache-locality of having frames and list elements compacted and placed next
to each other in the heap during collection.

5.3 Low-overhead Concurrency

To highlight the differences between each implementation of escape continuations when
used for concurrency, we measured the overhead of essential CML operations. For these
benchmarks, we had to first manually tune both stack-based strategies so they do not per-
form poorly due to high memory usage. The size of contiguous stacks were lowered to
1MB, and each stack segment was set to 2KB. We believe these these values are not large
enough to perform well, or actually execute, the sequential suite.

Figure 5.8 shows the overhead of spawning and synchronizing CML threads. During
each iteration, a new CML thread is spawned, which then synchronizes with the spawning
thread before exiting. The CPS strategy is the fastest in this case, even with a warmed
up stack cache for the other two strategies. Segmented stacks are unusually bad in this
benchmark, for reasons we do not completely understand.

The other crucial aspect of CML performance is the overhead of synchronous message
passing. Figure 5.9 shows the performance of sending empty messages between two
threads. During every iteration, one thread sends a message to the other, and waits for
another message in reply. Each message sent in our implementation of CML is a form
of yield: we capture an escape continuation and place it, along with the message, in the
channel before entering the scheduler.

We believe that contiguous stacks outperform the CPS strategy in this test due to cache
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locality: every iteration reuses the same part of memory to capture escape continuations.
With segmented stacks, the overflow handler is fired for every capture to obtain a new
segment, which is significantly slower than the other strategies.

5.4 Implementation Complexity

The main effect of using any continuation strategy where frames are reused is that it adds
to the size and complexity of the runtime system. In particular, both contiguous and seg-
mented stacks require a separate stack area and stack cache. Since many runtime systems
already feature generational garbage collection, generational stack scanning for the CPS
strategy comes “for free.” When frames are reused, a watermarking system is needed.

The other quirk comes in the form of the “tuning” required to use contiguous and seg-
mented stacks. Some of our sequential benchmarks required nearly 100MB of stack space
in order to execute, which is not a tenable size if concurrency is also present when using a
contiguous stack. In addition, the performance of our implementation of segmented stacks
was unusually poor when used for concurrency, despite our best efforts to optimize it.

5.5 Conclusion

Of the three strategies available to implement escape continuations, there seems to be no
ideal strategy. Contiguous stacks work well for sequential and concurrent programs, but
have the downside of a fixed recursion depth and increased runtime system complexity.
The CPS strategy with flat closures performs quite poorly in sequential workloads, but
are very easy to implement if the priority is efficient concurrency. We see no reason to
use segmented stacks at this time, as they are more difficult to implement than contiguous
stacks, yet perform worse despite our best attempts to optimize them.
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We would like to extend Manticore with one more strategy: mutable, heap-allocated
frames. A larger suite of sequential and concurrent programs would provide a better pic-
ture of the performance. In addition, we would like to perform a deeper investigation
of what causes some strategies to falter by analyzing cache behavior and using dynamic
profiling.
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